Traps and Triggers in Thief

Note: This document assumes a familiarity with the document “Using Archetype Scripts.” So, if you haven’t read that, go read it.

The “Trap/Trigger” system in Thief is an object-based tool kit for designers to implement a variety of causal relationships in their mission designs. The purpose of the Trap/Trigger system is twofold:

· There are a great many simple causal relationships among objects in a typical action/adventure game. It would be cumbersome to implement all of them by writing custom scripts. At the same time, the set of causes and effects are each typically small and manageable. Some system for separating causes from effects in scripts is necessary so as to render the problem of scripting all object behaviors tractable.

· The resources for implementing scripts are scarce and potentially overburdened. Moreover, it’s both inefficient and detrimental to creativity to have designers dependent on outside help to implement object behaviors. By developing a system based on object placement and the setting of properties and links, mission designers can implement most simple effects themselves.

The Trap/Trigger system addresses these goals by providing a set of standardized scripts which describe causes and effects in each others’ absence, using a shared set of communication assumptions to allow the causes and effects to be related. This communication is based on the transmission of messages between objects. Objects which receive messages and actuate effects are referred to as traps,
 while objects whose purpose is to generate these messages in response to the state of the simulation are called triggers. In addition, there are meta-traps which are both traps and triggers: they generate messages in response to other messages. The purpose of meta-traps is to transform or analyze messages so as to manipulate the logical relationships between traps and triggers.

In order to build the causal relationships we’re looking for, triggers need a way to know what traps they affect. This is done with ControlDevice links, just as is done with levers and buttons. In fact, levers and buttons are just very simple triggers. Triggers in general can send TurnOn and TurnOff messages just like the messages you should be familiar with from using levers and buttons. Frequently, in fact, it may be handy for testing purposes to set up a trap which is controlled by a lever or button either in addition to or instead of the intended triggering mechanism, substituting the intended trigger later.

The traps and triggers currently implemented in the Thief game system are as follows:

Triggers:

Levers and Buttons: As described in “Using Archetype Scripts.”

Alertness Trigger: By adding the script TrigAIAlert to a creature, it can be made to send a TurnOn message when the AI becomes fully alert of the player. Currently there is no condition for such a creature sending a TurnOff, but the exact behavior may change in this case. This script is intended primarily for implementing security cameras, but could be put to other applications by a subtle designer.

Bounds Trigger: This trigger describes an invisible detection region. The trigger will fire whenever any creature or the player object enters that region. The dimensions of the detection space can be adjusted by setting the object’s Physics/Dimensions property.

Flicker Trigger: A flicker trigger will send TurnOn and TurnOff messages on a periodic basis. The two messages alternate. The time between messages is determined by the Rate field in the objects Tweq Flicker property.
Light Trigger: This is a default behavior of the anim light scripts. Lights send a TurnOn message whenever they themselves are turned on, and a TurnOff when turned off.

Look Trigger: In this case, “Look” is intended in the strict sense of interface focus (or “highlight”). Activate this behavior by putting the TrigWorldFocus script on the object, and making sure that it has a FrobInfo property with the FocusScript bit of its World Action field checked on. It will send a TurnOn when focused on, and a TurnOff upon losing focus.

Open Door Trigger: This behavior can be activated by adding the TrigDoorOpen script to the door in question. The door will then send a TurnOn message the moment the it begins to open, and a TurnOff when it comes to a close.

Pressure Plate Trigger: This is a default behavior of the pressure plate scripts. Pressure plates send a TurnOn message whenever they are depressed, and a TurnOff when they rebound.

Quest Variable: A questvar trigger (not the same as a Quest Variable trap; see below) detects when the value of a quest variable meets certain criteria. The behavior of the trap is parametrized by the Traps/QuestVar property. This property is a string, which encodes the action of the trap in the following format:

<comparator><argument>:<quest variable name>

Where <comparator> is a single character used to describe the comparison to perform on the quest variable, either ‘=’, ‘>’, or ‘<’. <argument> is an integer. If when the quest variable comes to have the stated relationship to the argument (becomes equal, greater than, or less than it), the trigger sends a “TurnOn.” When this relationship is broken, it sends a “TurnOff.” The trigger also sends an appropriate signal at the beginning of simulation based on whether the initial value of the quest variable satisfies the relation. The quest variable must exist at the beginning of simulation for this to work: some mission quest variables (such as the ones which track mission statistics) are created in code if they don’t already exist. You should make sure they do already exist and are initialized appropriately if you intend to use quest variable triggers to track them. See EXAMPLES, below.

Room Trigger, Player: By adding the TrigRoomPlayer script to a room object, the room can be made to send a TurnOn message when the player object enters the room, and a TurnOff when it leaves. If detection of the transition between two particular rooms is desired instead, you can put the TrigRoomPlayerTrans script on either of the two rooms in question, and add a Route link between the two rooms to indicate the direction of the transition to be detected. Player movement between the two rooms in the same direction as the Route link will trigger a TurnOn, while movement in the opposite direction will trigger a TurnOff.

Room Trigger, Population: By adding the TrigRoomCreature script to a room object, the room can be made to send a TurnOn message whenever the population of the room (in total creatures plus the player object) becomes non-zero, and a TurnOff when it becomes zero.

Search Container Trigger: This is a default behavior of the container scripts. Containers send a TurnOn message whenever they are frobbed.

Slay Trigger: If you add the TrigSlain script to any object, it will send a TurnOn message when that object is “slain.”

Unlock Trigger: This behavior can be activated on any lockable object (e.g. door, lockbox, or container) by adding the TrigUnlock script to the object. The object will send a TurnOn when unlocked and a TurnOff when locked.

Warding Glyph Trigger: Glyphs are flat runic objects intended to be placed on floors. The glyph is set off by proximity to any creature or the player object, just like a Bounds Trigger. The only real difference between the two is that the Glyph has a visible object associated with the trigger, and accompanying special effects when triggered. These effects assume that the glyph is placed on a floor; if you place it on some other surface you may have to adjust the axis of its TweqRotate property. On many surfaces, it will not be possible to adjust the Glyph’s properties to achieve a satisfactory special effect. So, don’t do that.

Meta-Traps

Meta-traps exist to pass along whatever messages they receive, sometimes transforming the message in the process. Some meta-traps (Require All and Require Any) depend on the whole history of messages they have received to make their decisions about what message to pass on, but most only look at the incoming message. Any of this latter sort of meta-trap can be locked (by adding the Locked property of TRUE, or by giving them a Lock link to something which is locked). This keeps them from passing any messages along at all. Once unlocked, they behave normally.

Filter “On”: This trap passes TurnOn messages along its outgoing ControlDevice links, but does not respond to TurnOff. If there’s demand for a similar Filter “Off” trap, it can be easily implemented, or the equivalent can be constructed by putting an inverter on either side of a Filter “On.”

Inverter: This trap passes messages along its outgoing ControlDevice links, but converts TurnOn messages to TurnOff and vice versa.

Relay: This trap passes any TurnOn or TurnOff messages it receives along to its controlled devices unchanged. The purpose of this trap is convenience if a collection of traps is controlled by a variety of possible triggers. Instead of having each trigger link to all traps, each trigger can link to the relay, which can link to all traps.

Require All: This trap keeps track of whether the most recent message received from each of its controllers was a TurnOn or a TurnOff. If it was a TurnOn, it marks this by keeping a ScriptParams link to the controller; you should add such a link yourself if the controller object starts “on.”

When all of the trap’s controllers register as most recently sending TurnOn, the Require All trap sends a TurnOn. As soon as this condition no longer holds true, it sends a TurnOff.

Require Any: This trap is the opposite of the Require All trap. It sends a TurnOn as soon as the first device which controls it has sent a TurnOn, and sends a TurnOff when the last controlling device which had sent a TurnOn sends a TurnOff. All other TurnOn and TurnOff messages reaching the trap are filtered out.

Traps

Create: The create trap does not actually create objects per se. Instead, it contains an object, which it can place in the world if it gets a TurnOn message. Except for having no response to TurnOff messages, it acts the same as the Release trap. For an object which actually creates other objects, use an Emitter trap.

Destroy: When triggered by a TurnOn message, this trap destroys all objects to which it has ControlDevice links. Then, aghast at having lost its purpose in life, it destroys itself. Then it rains.

Elevator Up/Down: This is a default behavior of elevators. See “Using Archetype Scripts.”

Emit Projectile: Both the Emitter trap and the EmitStream trap allow you to shoot projectiles. The Emitter trap shoots once when it gets a TurnOn, while the EmitStream trap starts shooting when it gets a TurnOn and stops when it gets a TurnOff.
The type of object emitted by the trap is determined by its Tweq Emit property. Normally, it will inherit a property from its archetype which causes it to emit broadheads. If you would like it to emit something else, just put a Tweq Emit property on your particular trap and set its “Emit what” field to the name of the archetype of the object to be emitted.

The objects emitted will be oriented to match the emitter trap. To get a better sense of what direction your trap is pointing, you can (temporarily) set its Has Refs property to TRUE, which will cause the trap to render as if it were a broadhead.

Note that the Tweq Emit and Tweq Emit State properties have a variety of other fields. If it’s not mentioned here, odds are you don’t have to touch it. In particular, the “Velocity” field needn’t be edited in most cases, and the things you’re interested in emitting will probably come with their own intrinsic initial velocities, which need not be added to by the trap.

You can reload the Emitter trap after it shoots by adding the ReloadTweqEmit script to the trap object, which will cause it to shoot again each time it gets a new TurnOn message. You can also set the Emitter trap to fire several objects in succession when it gets a TurnOn. To do this, give the trap its own Tweq Emit property instead of inheriting from its archetype. Set the Rate field of the property to something more reasonable than 1 millisecond: this is the time in between shots in the group. Set the Max Frames field to the number of shots in the group. Now edit the object’s Tweq EmitState property, setting its Cur Time field to 1 millisecond less than the Rate (so that it fires immediately upon being triggered).

Light/Extinguish: This is a default behavior of anim lights. See “Using Archetype Scripts.”

Lock/Unlock: This is a default behavior of lock boxes. See “Using Archetype Scripts.” In addition, there is an abstract “FnordLock” object in the TrapTrig section of the hierarchy which shares this behavior. Any object can have a Lock link to a FnordLock, which can in turn be controlled by any of the standard triggers.

Open/Close Door: This is a default behavior of doors. See “Using Archetype Scripts.”

Quest Variable: A questvar trap can be used to set the value of any mission quest variable, or to perform arithmetic operations on it. The behavior of the trap is parametrized by the Traps/QuestVar property. This property is a string, which encodes the action of the trap in the following format:

<op><argument>:<quest variable name>

Where <op> is a single character used to describe the action on the quest variable, and <argument> is an integer. The interpretation of the <op> may depend on whether the trap is responding to a TurnOn or a TurnOff message. Currently-implemented ops and their effects are as follows: basically all the operations I could think of, some of which may be useful…

Op
Effect of TurnOn
Effect of TurnOff

=
Set questvar equal to <argument>
None

!
Set all of the bits of questvar which are set in <argument>
Unset all of the bits of questvar which are set in <argument>

+
Add <argument> to questvar
Subtract <argument> from questvar

–
Subtract <argument> from questvar
Add <argument> to questvar

*
Multiply questvar by <argument>
Divide questvar by <argument>

/
Divide questvar by <argument>
Multiply questvar by <argument>

%
Find remainder of questvar ÷ <argument>
Multiply questvar by <argument>

{
“Shift left” questvar by argument (essentially, multiply questvar by 2<argument>)
“Shift right” questvar by argument (divide questvar by 2<argument>)

}
Shift right questvar by <argument>
Shift left questvar by <argument>

Release: A release trap can create and/or destroy a particular object, based on TurnOn and TurnOff messages respectively. In reality, the release trap acts as a container; it “destroys” the object by containing it, holding it for future reference should it need to be “created” again.

Release traps cannot “destroy” an object without refs (i.e., its “HasRefs” property is FALSE, as for example when the object is inside some other container or in a creature’s inventory). Objects are “created” by release traps in their last known position, or at the position of the trap if they have not been “destroyed” by the trap before.

To place a release trap with its associated object contained in it, add a Contains link between the two objects as normal. Otherwise, you should place an Owns link from the trap to the object instead.

Sound: A sound trap will play a sound effect when it gets a TurnOn message. The effect to play is indicated by a SoundDescription link from the trap to a schema.

If you’re planning on playing a particular schema with a large number of traps, or if you want both TurnOn and TurnOff sounds, you should invent a “DeviceType” for your group of traps. Any string not already taken by a DeviceType in r:\prj\cam\art\src\schema\envsound.spc will do. Talk to Eric about creating the new DeviceType and adding the appropriate DeviceType (and “Event Activate” or “Event Deactivate”) tag to the schema you want to play. The sound trap will play its “Activate” schema when it gets a TurnOn, and its “Deactivate” schema when it gets a TurnOff.

The advantages of this approach are that it doesn’t require you to create links, and you can have both TurnOn and TurnOff sounds. The disadvantage is that adding new tags to schema involves a noticeable turnaround time, in a process requiring both Eric’s work on schema files and an update to the gamesys.

Sound traps can also act as triggers, though they aren’t listed as meta-traps since transformation of message logic isn’t really their purpose. Whenever a sound trap finishes playing a schema, it will trigger a TurnOn message. So you can make things contingent upon some sound effect finishing, or play several sound effects in sequence.

Teleport: A teleport trap responds only to “TurnOn” messages. It is only designed to work with a single ControlDevice links. The controlled object is teleported to the trap’s location (and oriented to the trap’s facing) when the trap fires. It is safe to teleport objects out of containers (including creature inventories) using this trap.

Teleporting the player object poses a problem, in that you can’t make a ControlDevice link in the editor to an object which doesn’t exist yet. So, if a teleport trap is linked to the player factory, it will teleport the player object instead.

Examples

The following examples are all taken from real Thief and Thief 2 situations. Thus, they illustrate how a range of actual practical mechanisms that you’ll want to set up can be implemented in Trap/Trigger.

EXAMPLE: A large statue or stone head which, when highlighted, plays a custom sound and then “breathes fire” out in front of it.

IMPLEMENTATION: The statue has a “Look trigger” on it, chained to a Sound trap, which in turn controls an Emitter trap. Focusing on the statue plays the sound, and when the sound is done, the Sound trap triggers the Emitter trap.

EXAMPLE: Mission victory condition 4 should be scored complete when the player scores more than 7 knockouts.

IMPLEMENTATION: First, be sure to quest_create_mis DrSKnockout,0 so the trigger will initialize correctly (DrSKnockout is the mission quest variable used to track the “Knockouts” debriefing statistic). Make a Quest Variable trigger with a Traps/QuestVar property of “>7:DrSKnockout”, linked to a Quest Variable trap with a Traps/QuestVar property of “=1:goal_state_4”.

EXAMPLE: A ring of unlit torches; when all 6 torches are lit, it triggers seven sliding “terrain” objects, which slide away to expose six monsters and one escape-pool.

IMPLEMENTATION: Each torch is linked to a Require All meta-trap. The meta-trap is linked to the objects (actually sliding doors).
EXAMPLE: A depressed pressure plate with a treasure on it; if the treasure is simply removed, emitter traps fire at the player. If another object of similar weight is swapped with the treasure, no trap is triggered.

IMPLEMENTATION: The pressure plate is of the standard type. It is linked to the Emitter traps by way of an Inverter meta-trap. Thus, the Emitters only fire when the pressure plate relaxes.

EXAMPLE: Opening a chest causes trap doors to open, dumping the player (if the player is standing on one of them) into a pit.

IMPLEMENTATION: The chest is linked to the trapdoor directly. Searching the chest opens the door.

Torch

Torch

etc…

Require All

Door

Door

etc…

� Despite the name, there is no assumption that traps are actually dangerous to anybody. Traps in that sense of the word are a common motivating example of in-world effects given the sort of games in question, hence the name.

